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Learning Objectives

After participating in this session, the learner should be better able to learn:

• how the combination of social determinants of health (SDOH) and race-ethnicity impact 
disparities in 30-day readmission using multiple multivariate analytic methods

• how such a mixed methods approach can reveal different groups of patients at the highest 
risk of readmission

• Health care organizations can deploy limited resources to reduce readmissions
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Introduction

• Hospital readmission rates have been used as a public reporting of 

quality metrics for hospital reimbursements or penalties with excess 

risk-standardized readmissions

• Reduction in hospital readmission rates has been a priority for 

improvement of healthcare quality and patient clinical outcomes

• Identifying risk factors of readmission is critical for early interventions

4

Sources: CMS (2017) HRRP User Guide; Edward Hunt (2016), Ponce Research Institute

CMS Hospital Readmissions Reduction 

Program & Financial Penalties
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Motivation

• In additional to the clinical characteristics, previous studies showed that 

race-ethnicity and the nonclinical conditions, SDOH,—including Area 

Deprivation Index (ADI)—were important factors that influence the likelihood 

of readmission

5

• SDOH: Centers for Disease 

Control and Prevention defined 

as “The conditions in which 

people live, learn, work, and 

play affect a wide range of 

health risks and outcomes”

Sources: https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health

https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health
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Area Deprivation Index (ADI)

6

• A ranking measure of neighborhoods by 

socioeconomic status disadvantage (income, 

education, employment, and housing quality)

• Created by the Health Resources & Services 

Administration and refined by Amy Kind, MD, PhD’s

research team at the University of Wisconsin-

Madison

• A Census Block Group/neighborhood level with a 

ranking of 10/100 indicates the highest level of 

"disadvantage" within the state/nation

• Higher ADI (worse): more deprived area

Source: https://www.neighborhoodatlas.medicine.wisc.edu/

https://www.medicine.wisc.edu/people-search/people/staff/537/KIND_AMY_JO
https://www.neighborhoodatlas.medicine.wisc.edu/


AMIA 2020 Clinical Informatics Conference Center for Bioinformatics – Medical Informatics Group, Henry Ford Health System

Research Gap & Objectives

• There is a lack of research studying 

• the impact of SDOH and race-ethnicity on readmission risk in the broader 

population setting

• how the effects of SDOH on readmission may depend upon race-ethnicity

• Objectives:

• Examine the effects of SDOH and race-ethnicity on readmission separately for all 

inpatient populations across a large health care system

• Investigate the racial-ethnicity specific effects of SDOH on readmission 

• Identify groups of patients with differing readmission risk based on SDOH, race-

ethnicity, and other key confounding features.
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Data Sources: HFHS Inpatient Registry
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Readmission 

• Encounter ID

• Patient ID

• Demographics

Age

Gender

Race-Ethnicity[1]

• Primary Insurance Type

• Dual Eligible Coverage

• Primary Diagnosis Code

(map to CCSR[2])

• 30-day 

Readmission(Y/N)

Other Social 

Factors 

(Flowsheet) 

• Encounter ID

• Patient ID

• Drug Use

• Lives Alone

• Depression

Data structure & key data elements (Encounter-level)

Charlson

Comorbidities 

Index

• Encounter ID

• Patient ID

• Charlson

Comorbidities

• Chronic Diseases 

(Y/N)

Hierarchy of Census Geographic Entities

Source: United States Census Bureau; The Esri Community

Time: 11/2015 - 12/2018 (256,077 Patient Encounters)

• Encounter ID

• Zip code+4 (Block Groups)

ArcGIS Geocoding Software 

ADI

• Zip code+4

• Encounter ID

• ADI Ranking Score

for ADI mapping Red: Outcome

Purple: Race-Ethnicity

Green: SDOH

Black: Other Variables

[1] Black, White, Hispanic & Latino, Others

[2] CCSR: AHRQ Clinical Classifications Software Refined Categories 
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Analytical Workflow
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Encounter-level Dataset

• Race-Ethnicity

• Six SDOH

• Age

• Gender

• Charlson Comorbidities 

Index & 17 Chronic 

Diseases (Y/N)

• Top15 CCSR Diagnosis 

Categories & Others

• 30-day Readmission (Y/N)

Descriptive Analysis & 
Basic Univariate Analysis

• Chi-squared test for categorical 

variables

• t-test for continuous 

variables

Multivariate Logistic Regression 
Models

• Model A: 

Race-Ethnicity + SDOH + confounding 

factors (Age, Gender, CCI, Chronic 

Diseases, and CCSR)

• Model B: 

Variables in Model A + multiplicative 

interaction terms

• Model C: 

Three stratified models for three race-

ethnicity groups

(Variables in Model A, except Race-

Ethnicity)

Latent Class Analysis[1]

• Data-driven analytic approach 
(similar as cluster analysis)

• This data exploratory tool can 
be used to identify district, 
unknow patterns in 
subpopulations based on a set 
of observed indicators from 
multiple layers of data

Test the synergistic effects 

(SDOH and race-ethnicity)

Test SDOH and race-ethnicity 

separately on readmission

Compare each SDOH effect in 

different race-ethnicity groups

[1]: Muthén B, Muthén LK. Integrating person-centered and variable-centered analyses: Growth 

mixture modeling with latent trajectory classes. Alcohol Clin Exp Res. 2000;24(6):882–891.
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Latent Class Analysis (LCA) Diagram
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Latent Class 

Model

Observed Variables

Charlson

Comorbidities 

Index

Drug Use

Dual 

Eligible 

Coverage

Depression
Age

(4 groups)
Lives 

Alone
Gender

ADI

(4 groups)
Insurance 

Type

Race-

Ethnicity

(4 groups)

Latent Class 

N

Latent Class 

2

Latent Class 

1
……………..

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝1

Selection criteria for number of latent classes:

(1) adjusted Bayesian information criteria (BIC)

(2) number of participants assigned to each class 

(3) mean posterior probabilities in each class 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝2
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑁
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Analytical Workflow
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Encounter-level Dataset

• Race-Ethnicity

• Six SDOH

• Age

• Gender

• Charlson Comorbidities 

Index & 17 Chronic 

Diseases (Y/N)

• Top15 CCSR Diagnosis 

Categories & Others

• 30-day Readmission (Y/N)

Descriptive Analysis & 
Basic Univariate Analysis

• Chi-squared test for categorical 

variables

• t-test for continuous 

variables

Multivariate Logistic Regression 
Models

• Model A: 

Race-Ethnicity + SDOH + confounding 

factors (Age, Gender, CCI, Chronic 

Diseases, and CCSR)

• Model B: 

Variables in Model A + multiplicative 

interaction terms

• Model C: 

Three stratified models for three race-

ethnicity groups

(Variables in Model A, except Race-

Ethnicity)

Latent Class Analysis
• Data-driven analytic approach 

(similar as cluster analysis)

• This data exploratory tool can 
be used to identify district, 
unknow patterns in 
subpopulations based on a set 
of observed indicators from 
multiple layers of data

Test the synergistic effects 

(SDOH and race-ethnicity)

Test each SDOH effect on 

readmission

Compare each SDOH effect in 

different race-ethnicity groups
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The univariate results showed that Race-Ethnicity and 
all SDOH were significantly associated with readmission
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[a] Chi-squared test for categorical variables; t-test for continuous variables

ReadmissionY/N ~ Race-Ethnicity 

ReadmissionY/N ~ each SDOH

Readmission rate: 13.6%
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Analytical Workflow
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Descriptive Analysis & 
Basic Univariate Analysis

• Chi-squared test for categorical 

variables

• t-test for continuous 

variables

Multivariate Logistic Regression 
Models

• Model B: 

Variables in Model A + multiplicative 

interaction terms

• Model C: 

Three stratified models for three race-

ethnicity groups

(Variables in Model A, except Race-

Ethnicity)

Latent Class Analysis
• Data-driven analytic approach 

(similar as cluster analysis)

• This data exploratory tool can 
be used to identify district, 
unknow patterns in 
subpopulations based on a set 
of observed indicators from 
multiple layers of data

Test the synergistic effects 

(SDOH and race-ethnicity)

Test each SDOH effect on 

readmission

Compare each SDOH effect in 

different race-ethnicity groups

• Model A: 

Race-Ethnicity + SDOH + confounding 

factors (Age, Gender, CCI, Chronic 

Diseases, and CCSR)

Encounter-level Dataset

• Race-Ethnicity

• Six SDOH

• Age

• Gender

• Charlson Comorbidities 

Index & 17 Chronic 

Diseases (Y/N)

• Top15 CCSR Diagnosis 

Categories & Others

• 30-day Readmission (Y/N)
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According to the multivariate results, all SDOH were associated 
with readmission, except Medicaid insurance (vs. Medicare)

14

Model: ReadmissionY/N ~ each SDOH + Race-Ethnicity + 

Age + Gender + AHRQ CCSR Diagnosis Category + Charslon CCI Score + Chronic Diseases  

• The patients with at least one SDOH had higher risk of 30-day readmission
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Odds Ratio 95% CI P-value

ADI (continuous) 1.002 1.000-1.002 P < 0.001

ADI (categorical) Reference: ADI percentile Q1 (1-45)

ADI Q2 (46-69) 1.068 1.032-1.106 P < 0.001

ADI Q3 (70-90) 1.066 1.029-1.104 P < 0.001

ADI Q4 (91-100) 1.127 1.084-1.173 P < 0.001

Logistic Regression Model: Readmission Y/N ~ ADI (continuous/categorical) + Race-Ethnicity + 

Age + Gender + AHRQ CCSR Diagnosis Category + Charslon CCI Score + Chronic Diseases  

The patients living in more deprived areas were more likely 
to be readmitted in 30 days
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Analytical Workflow
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Descriptive Analysis & 
Basic Univariate Analysis

• Chi-squared test for categorical 

variables

• t-test for continuous 

variables

Multivariate Logistic 
Regression Models

• Model B: 

Variables in Model A + multiplicative 

interaction terms

• Model C: 

Three stratified models for three race-

ethnicity groups

(Variables in Model A, except Race-

Ethnicity)

Latent Class Analysis
• Data-driven analytic approach 

(similar as cluster analysis)

• This data exploratory tool can 
be used to identify district, 
unknow patterns in 
subpopulations based on a set 
of observed indicators from 
multiple layers of data

Test the synergistic effects 

(SDOH and race-ethnicity)

Test each SDOH effect on 

readmission

Compare each SDOH effect in 

different race-ethnicity groups

• Model A: 

Race-Ethnicity + SDOH + confounding 

factors (Age, Gender, CCI, Chronic 

Diseases, and CCSR)

Encounter-level Dataset

• Race-Ethnicity

• Six SDOH

• Age

• Gender

• Charlson Comorbidities 

Index & 17 Chronic 

Diseases (Y/N)

• Top15 CCSR Diagnosis 

Categories & Others

• 30-day Readmission (Y/N)



The effect of insurance type on readmission was 
dependent upon race-ethnicity
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• The patients who were covered by commercial (private) insurance compared 

with those covered by Medicare had lower risk of readmission, especially for 

the White patients

Overall Model: ReadmissionY/N ~ Insurance Type + Race-Ethnicity + 

Insurance Type x Race-Ethnicity + Age + Gender + AHRQ CCSR Diagnosis Category 

+ Charslon CCI Score + Chronic Diseases  

Overall: <0.001



The effect of depression on readmission was 
dependent upon race-ethnicity

18amia.org 18

Overall: <0.001

• The patients who had depression history were more likely to be readmitted 

in 30 days, especially for the Hispanic patients

Overall Model: ReadmissionY/N ~ Depression + Race-Ethnicity + Depression x Race-Ethnicity +

Age + Gender + AHRQ CCSR Diagnosis Category + Charslon CCI Score + Chronic Diseases  

Overall: <0.012



Analytical Workflow
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Encounter-level 

Dataset• Race-Ethnicity

• Six SDOH

• Age

• Gender

• Charlson Comorbidities 

Index

Descriptive Analysis & 
Basic Univariate Analysis

• Chi-squared test for categorical 

variables

• t-test for continuous 

variables

Multivariate Logistic Regression 
Models

• Model A: 

Race-Ethnicity + SDOH + confounding 

factors (Age, Gender, CCI, Chronic 

Diseases, and CCSR)

• Model B: 

Variables in Model A + multiplicative 

interaction terms

• Model C: 

Three stratified models for three race-

ethnicity groups

(Variables in Model A, except Race-

Ethnicity)

Latent Class Analysis
• Data-driven analytic approach 

(similar as cluster analysis)

• This data exploratory tool can 
be used to identify district, 
unknow patterns in 
subpopulations based on a set 
of observed indicators from 
multiple layers of data

Test the synergistic effects 

(SDOH and race-ethnicity)

Test each SDOH effect on 

readmission

Compare each SDOH effect in 

different race-ethnicity groups
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Latent Class Analysis – Six SDOH

20



Latent Class Analysis – Age, Gender, 
Race, and Charlson CCI 
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Latent Class Analysis – Overall Summary
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Group 1:

High 

Readmission

(19.5%)

High proportions of

- African American

- High ADI

- Drug use

- Living alone

- Depression

- Dual Eligibility

- Medicare 

insurance

20% of PE

Total: 256,077 Patient Encounters (PE)

Group 2:

Medium 

Readmission

(15.7%)

High proportions of

- White patients

- Older patients

- Living alone

- Low ADI

35% of PE

Group 3:

Low 

Readmission

(9.5%)

High proportions of

- White patients

- Females

- Low comorbidity 

scores

Low proportions of

- All SDOH

45% of PE
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Patient Encounter Frequency for High-risk Readmission
Group from LCA (Detroit Metropolitan Tri-County Area)

23

Macomb, Oakland, & Wayne Counties
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Patient Encounter Frequency for High-risk Readmission 
Group (Detroit Cities)
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18.56%
14.15%

15.45%

17.29%

16.71%

• Five hot-spots and the readmission rates (overall readmission rate: 13.6%)



AMIA 2020 Clinical Informatics Conference Center for Bioinformatics – Medical Informatics Group, Henry Ford Health System

Limitations

• This study is a retrospective observational study, and the data source is 

limited to one health system

• A high proportion of patients who are African American and of lower socioeconomic 

status (living in more deprived areas)–which may not be representative of patient 

populations elsewhere 

• The readmission data comes primarily from our Epic EMR databases and is 

supplemented with other external datasets, but without a complete match 

• It is supplemented with Admission data from our connection with the Michigan 

Health Information Network (MiHIN) and Post Acute Referral information

• Do not get a complete match from the MiHIN data to our patients, 

• We are only allowed to see information on patients that are under the care of a Henry Ford 

Medical Group doctor or the populations covered by some specific insurance types
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Conclusion

• Findings from this study demonstrate the complex interplay between SDH and race-

ethnicity influencing 30-day readmission

• Based on the identification of susceptible groups of patients, these results will be 

used to establish priorities for limited resources to reduce readmission

• Future work will leverage insight obtained for this study combined with additional 

clinical and discharge features to develop comprehensive predictive models for 30-

day readmission
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Practical Application of this Session

• The study help address the patients who were minority with SDOH issues 

had higher risk of readmission

• Health care organizations can keep tracking and enhance education for these 

patients after they discharge, and support appropriate resource deploy to reduce 

disparities of readmission for improving healthcare quality

27
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