

Detecting Tweets Mentioning Drugs with a Deep Neural Network Ensemble

Deep Learning

VS07

Davy Weissenbacher

University of Pennsylvania

Twitter: @davy_weiss - Tweet your questions!

#IS20

Disclosure

I and my wife have NO relevant relationship with commercial interest to disclose.

Learning Objectives

After participating in this session the learner should be able to:

- Define the problem of drug names detection in tweets
- Explain the limitation of the lexical search method
- List the main methods for detecting drug names
- Explain the best approach based on deep neural networks
- Report on the current performance of drug names detection when applied on 112 home timelines

Why extracting tweets mentioning drugs?

- Tweets mentioning drugs useful for:
 - Syndromic surveillance
 - Pharmacovigilance
 - Monitoring drug abuse
- Typically, collections use drug names as keywords inherent bias
- In a 'natural' timeline, these tweets **are rare**, only 0.26% in our corpus
- Lexical searches fail:
 - Misspellings
 - Ambiguity
- Goal: Extract drug mentions from user timelines (an extremely sparse corpus) using Deep Neural Networks

Detecting Tweets Mentioning Drugs

- Drug definition
 - Drug product as defined by the FDA (prescription & over the counter)
 - Dietary supplements
- Resolving a binary classification task
 - Lola may has a stye, or pink eye. Doc recommends warm compress => 0 (not mentioning a drug)
 - Meet Mr and Ms Lexapro... Garanteed fidelity

=> 1 (mentioning a drug)

The competition is now open @ #SMM4H, task 1: https://healthlanguageprocessing.org/smm4h-sharedtask-2020/

UPennHLP Timeline Corpus

- Corpus: 112 timelines (98,959 tweets) of women twitting during their pregnancy
- Annotation: 282.5 hours of annotation, IAA k=0.88
- Corpus split:
 - 70% for training (181 positive, 69,091 negative examples)
 - 30% for evaluation (77 positive, 29,610 negative examples)
- Only 258 tweets mentioned a drug, i.e. 0.26% of the tweets

A DNN for Drug Detection

Encode morphology of words

A DNN for Drug Detection

On unbalanced data, require pre-filtering

Kusuri overview

Performance on Natural Corpus

Systems	Precision	Recall	F1
Lexicon+Variant classifier	55.0	71.4	62.1
Ensemble Bidirectional-GRUs (trained on unbalanced corpus)	87.5	63.6	73.7
Kusuri	94.55	67.5	78.8

Conclusion and Future Work

- On balanced corpus, performance is close to human annotators'
- On natural corpus, our system outperforms existing performances in well-established challenges [Limsopatham and Collier, 2016]
- Extreme imbalanced data is the main challenge:
 - Replacing the 4 filters by active learning
 - Exploiting unlabeled data with Generative Adversarial Networks

[Weissenbacher et al., Deep neural networks ensemble for detecting medication mentions in tweets. 2019. JAMIA.

Thank you!

Email me at:

