N\NMI/N

IIIIIIII CS PROFESSIONALS. LEADING THE WAY.

Using Deep Learning with
Spatial Transformations to
Predict Protein-Ligand Binding

David Ban
North Allegheny Senior High School



Introduction - Drug Discovery NAMIN
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Time Consuming - Expensive - Labor Intensive
Protein-Ligand Binding is Important for Drug
Discovery

m 90% of drugs on market act on proteins*

e Protein: molecules essential for body functions
e Ligand: molecule that binds to a protein, i.e.
drug

10XR - Aspirin binding

Causes anti-inflammmatory effects
Rask-Andersen, et al,, Trends in the exploitation of novel drug

Singh RK, Ethayathulla AS, Jabeen T, Sharma S, Kaur P, Singh
targets. Nature Reviews Drug Discovery, 10:579-590, Aug. 2011 TP.J Drug Target. 2005 Feb; 13(2)113-9.
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Introduction - Convolutional Neural Networks — ZNMIAN

e Deep Learning Neural networks
m Commonly applied to analyzing visual imagery
m Learns features of the image as “filters” or “feature maps"
m FEach additional layer allows learning at a higher level features

: Dog: 0.99
< Cat: 0.02

Convolution Convolution Fully Connected
Feature Maps Feature Maps Traditional NN

Ragoza, M. et al. Protein-Ligand Scoring with Convolutional Neural Networks. J. Chem. Information and Modeling. 942-957, April. 2017
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Introduction - Spatial Transformer Networks NAMIN

e STNs module incorporated into CNN
e Manipulates data in multiple dimensions

e Spatially transforms data

m 7
e Resilient to perturbation
o
O translation, rotation, dilation, warping H_ >
m 6
Jaderberg, M. et al. “Spatial Transformer Networks”. Feb. 2016
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Introduction - Can we doit? NAMIN

Question: can neural networks predict protein-ligand
binding after rigid body transformations?

TOXR Aspirin TOXR-Aspirin
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Method - Ligand Voxelization and Perturbation ~ ZNMIZ\

3D Voxelization Translation Rotation
e Representsstructures e Translated along e Translated along
iNn cartesian X,y and z axis roll, pitch and yaw
coordinates e FError measured in e Error measured in
e Atoms represented as angstroms radians
voxels
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Methods - Pytorch and Caffe Outline NAMIN

True Perturbation

translation
Predicted

voxel-ized :
_ complex Perturbations
or /) gTNs —

rotation

N

Calculate Loss

roll, pitch, yaw

(80%)

20%) Repeat 10,000 times

AMIA 2019 | amia.org



Results - Loss Convergence: Caffe vs PyTorch AMIN
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Results - prediction Accuracy: Translation AMIN
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Results - prediction Accuracy: Rotation-Caffe AMIN
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Results — Correlation between predicted and true
values for rotational models: Caffe NAMIN

roll pitch yaw

LA,

I pearsonr =0.89; p=0 |

pearsonr = 0.68; p =0
&
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Pearsonr=0.68,p =0 Pearsonr=0.89,p=0 Pearsonr=0.68,p=0
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Results - Summary of Pearson R AMI/N

Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
0 2 Angstrom Translation = - - - - - 0.96 0.96 0.96 096 | 096 0.96
s
(§) Rotation 0.68* 0.68* 0.89 0.89 0.69* 0.68* - - - - - -
'5 2 Angstrom Translation = - - - - - 0.86 0.86 0.85 0.85 0.86 0.86
|
2
>, | Rotation 0 0 0 0 0 0 - - - - - _
(a8

*Indicates biased Pearson R value
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Conclusions NAMIN
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e STNs are able to converge indicating their learning capacity.
Caffe model seems to work better than PyTorch model

e STNs are able to learn translational perturbations using Caffe
or PyTorch

e Random rotations of the ligand can be predicted by STNs but
with weaker accuracy than translation using Caffe

e PyTorch model was not able to converge for rotation
perturbations.

e Results are promising - further testing needs to be performed
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Thank you!




