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Heartwood Synthesis:
Semi-Automated Machine Learning
• Heartwood AnalyticsTM contains Heartwood

Synthesis, an automated machine learning
platform based off of initial research
performed by Cropp et al.2 (Figure 3).

• Heartwood Synthesis has been improved to
perform time-series analysis automatically
over data that is structured in a sequential
manner.

• Once a model is created and selected for the
user’s time-series data, the feature importance
pipeline is automatically executed for that
model (Figure 1).

Ongoing Validation in Clinical Settings
As a result of the initial successes seen by Cropp et al.2, Heartwood analytics has seen steady growth
and adoption in the healthcare industry. CUBRC’s primary partners operate in the area of complex
care and continue to field, test, and iteratively improve Heartwood alongside our team each day.

Currently, models that were selected, trained, and analyzed by Heartwood have been deployed for
predicting maladaptive behaviors in complex care environments at varying time intervals. As one
example, partners use Heartwood models and the Heartwood feature importance framework to
understand the driving factors correlated with aggressive behaviors in inpatient settings. With this
knowledge, they are able to supplement their decision-making and focus on more impactful
preventative care measures.

Our approach to time series modeling is a sufficiently generic approach that can satisfy needs across a
variety of longitudinal datasets. For those datasets with sparse data, we propose a unique way to analyze
these fields without removing information from the dataset. Overall, we believe that our modeling and
visualization approaches combine to produce actionable intelligence for healthcare staff. Through current
and future fielding of our technology, we anticipate that our methodology will hold with small
modifications depending on the complexity of the feature space being studied.

• Many real-world scenarios are complex processes that require deep architectures to fully understand 
which features serve as indicators. As the complexity of an architecture increases, an interpretable 
mimic model will trade off larger amounts of performance in order to maintain sufficient 
communication ability.

• Our mimic model is trained via gradient descent, which does not guarantee that a global minimum will 
be found when the model reaches convergence. Therefore, model performance must be considered 
when using our method to supplement decision-making.

• Our tool must be used as supplementary knowledge instead of providing an explicit automated 
intervention due to the lack of theoretical bounds for deep network model error and bias.

Future work will revolve primarily around modifying the global interpretability pipeline to focus on
indicator features. For example, instead of indicating the relative impact of a feature, our model will be
able to provide insight into the areas in which a feature is a sufficient indicator (the risk of entering a
diabetic coma is affected by blood sugar when blood sugar is above a specific threshold). By using this
technique, our model’s accuracy could improve significantly with minimal cost to interpretability.
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• Current models that can explain their decision process, such as linear models and shallow decision
trees, lack the accuracy that more structured modeling techniques produce for sparse longitudinal
data.

• For those models that can be interpreted, it is difficult to concisely convey important information to
care providers and clinicians as the input variables to be ranked increase in both count and sparsity.

• The Heartwood AnalyticsTM system addresses these problems through its feature importance
framework.

• The global approximations embedded in our meta-model are used to generate both group-level and
per-patient models of the impact of variables, which are gaining popularity among Heartwood
adopters in the complex care and autism care spaces.

• Heartwood AnalyticsTM uses a custom web interface (Figure 5) to communicate the meta-model
results to less-technical audiences, such as clinicians and staff that require more information to
reduce autism-related behavioral events.

• Adjustments made to feature values in the interface generate real-time predictions alongside
previous predictions in order to communicate feature importance (Figure 2).
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Figure 3. Schematic for the Synthesis machine learning pipeline, 
which automatically performs analysis based on the structure of 
the data present.

Addressing Sparsity
• We have found that a large portion of longitudinal sensor data is collected at drastically varying

frequencies.
• We cannot assume that these frequencies will be multiples of each other, so we must choose to either

lose information (via coarse binning) or introduce data sparsity to our models (via fine binning).
• Model accuracy is dependent on the information present, so we leverage fine binning as a

preprocessing step (Figure 4).
• Our sparse data fields are not interpolated due to the fact that interpolation could constrain the

learning process and induce bias.
• Missing values in sparse categorical fields are replaced by special missing value tokens which are

dependent on whether the missing field was discovered by the algorithm or created by the algorithm.
• Fields are then embedded into a high-dimensional feature space by neural network layers that

contribute to the end-to-end training pipeline.

Providing Real-Time Clinical Insights
• Heartwood AnalyticsTM contains a web

interface designed to assist healthcare staff in
their daily decision-making processes.

• The output of the Heartwood Synthesis feature
importance process is provided to this
interface, allowing users to view the most
impactful longitudinal features that were
learned by the model and mimic model.

• This interface provides both quick “what-if”
information based on the linear mimic model
(Figure 2) and detailed feature analysis for
general informational purposes (Figure 5).

• Due to the flexibility of our approach,
Heartwood can successfully provide both
individual and population-level insights and is
deployed in multiple care centers and contexts.

Figure 5: An example of the Heartwood Analytics feature importance
user interface that provides users with detailed information about
which captured data elements provide the greatest impact on an
individual’s disposition, allowing for more effective decision-making.

Pain Level Prediction
• Pain level modeling in Heartwood (see Methods) selected a convolutional neural network with

over 99% accuracy.
• Mimic model accuracy retained the majority of information, maintaining 98% accuracy.
• A person’s pain was determined by the mimic model to be highly correlated over time (previous

timestep had a weight of 0.98) and to have a powerful inverse correlation with pain at the current
timestep (weight of -1.16).

Summary

Time-Series Global Interpretability
• Standard interpretability measures, such as linear mimic models and gradient boosted tree mimic

models1, operate with strong independence assumptions over the data4.
• Longitudinal data, by definition, implies that feature-level independence over time cannot be

assumed5.
• We contribute to the model interpretability community by leveraging a vanilla recurrent neural network

to model global time-series interpretability.
• This neural network models a first-order Markov decision process, simplifying interpretability greatly

due to the fact that the final classification/regression score is independent of all prior information given
the model’s most recent prediction.3

• Due to the fact that each recurrent step uses the same weights, we can fold high-dimensional spaces
with f * t features into a much lower space with f + 1 features.

Datasets Used for Development
• Heartwood contains multiple examples of distributions for modeling that are used for internal research,

benchmarking, and development.
• One of these examples, the pain dataset, is a univariate time-series dataset that can be used with

ordinal regression or classification. The independent variable is measured pain over time, while the
dependent variable is a ranking based on the severity of the pain. Severity is a mildly noisy aggregation
of the most recent features, weighted according to the amount of time that has passed.

• Heartwood’s multivariate nutrition dataset models the impact of eating and exercise habits on overall
fitness. Variables such as amount of exercise performed (categorical), amount of macronutrients
consumed (ordinal), and time of interaction have quadratic interactions over time to produce a
classification measure of “fit” or “unfit.”

Figure 2: An example of the Heartwood Analytics
dashboard that displays expected patient outcome
as a factor of provided “what-if” information with
coloring provided by the meta-model.
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Figure 1: Heartwood’s Mimic Model Pipeline, which is used for
the generation of our longitudinal models for interpretation.

Nourishment Prediction
• Nourishment modeling (see Methods) selected an LSTM

network with poor accuracy for both the nutrition and
exercise data.

• Mimic model accuracy, however, retained the majority of
learned information, maintaining nearly perfect accuracy
in mimicking successful predictions.

• Previous predictions had 58% of the weight, followed by
date with 27% and quantity of food consumption at 15%.

• This emphasizes that our approach is highly dependent
on the ability of the underlying model.

• Poorly curated models (due to data filtering, signal-to-
noise ratio, etc.) may emphasize the wrong features,
which can be identified in our visualizations.

Figure 6: The feature importance chart produced for
the quantity of consumption (how much) feature
group in the exercise-based nourishment model.
Eating an appropriate amount supports the model’s
prediction of being healthy, while failed observations
or failure to eat is correlated with model predictions
trending towards unhealthy dispositions.


